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Cutoff Frequencies of Guiding Structures
with Circular and Planar Boundaries

B. N. Das, S. B. Chakrabarty, and A. K. Mallick, Member, IEEE

Abstract—The paper presents a method of evaluation of cut-
off frequencies of a guiding structure consisting of two ec-
centric circular arcs with edges shorted by conducting planes.
Combination of conformal transformation and method of finite
difference is used for the analysis. The general formulation
is applied to the limiting cases of lunar guide and also the
guiding structure of semicircular cross section with a semi-
circular dent along its diameter. Numerical data for TE and TM
modes are presented for different angular separation between
the shorting planes, distance between the centers and ratio of
radii.

1. INTRODUCTION

UTTLER [1] evaluated cutoff frequencies of a lunar

guide which is an eccentric coaxial line with a shorting
conductor connecting the closest points along the line joining
their centers. Kuttler [1] used the combination of conformal
transformation and method of intermediate problems for solv-
ing the weighted Helmholtz equation resulting from conformal
transformation. It is worthwhile to study the cutoff frequencies
when the shorting conductor between the two cylinders is split
into two parts and rotated.

In view of the complexity of the method of intermediate
problems from a conceptual and computational point of view.
the weighted Helmholiz equation is solved using the method
of finite difference [2].

Numerical data on cutoff frequencies of TE and TM modes
for different angular separation between the shorting planes
and different distance between the centers of the circular arc
with ratio of their radii as parameter are presented.

II. ANALYSIS

Consider the structure shown in Fig. 1. Application of the
conformal transformation [1], [3] transforms the structure of
Fig. 1 to a rectangle with conducting boundaries as shown
in Fig. 2. All mathematical expressions including conformal
transformation are derived in terms of absolute geometrical
parameters. The separation between the conducting boundaries
in Fig. 2 along the = and y axes is xg — z1 [1] and y2 — ¥z
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Fig. 1. w-plane representation of guiding structure with circular and planar
boundaries.
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The values of ¢ and ¢ are so selected that the values of
y along £ = x1 and © = zo are identical. The weighted
Helmholtz equation resulting from the conformal transforma-
tion assumes the form [1]
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The dimensionless parameter kR is obtained from the solu-
tion of simultaneous equations resulting from the application
of the method of finite difference. The rectangular boundary
in the transformed plane is divided into rectangular grid as
shown in Fig. 2. If M and N are the number of nodes along
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Fig. 2. z-plane representation of the structure of Fig. 1 obtained through
conformal transformation and the geometry of grid structure.

the x and y directions respectively, the separation between the
nodes in the two directions are

T2 —I1
hi = ,
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At the nodes of Fig. 2, the unknown function U are repre-
sented by Up_1)pr4q Where 1 <p< Nand 1 < ¢ < M.

Following the procedure suggested in the literature [2], the
difference equation reduces to the form

— Upp+ah? = Up—nym+h3 = Up—1)pM+q+1h3
~Up-1)M+q-1h3 + [(Zh% + 2h3)

h 2
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where
g =x1 4+ (g —1)hy
Yp =y1+ (p—1)hs

Equation (5) gives a set of simultaneous equations as p and

q assumes values over therange 1l <p< Nand 1 <g< M

as stated above. This set of simultaneous equations leads to a
matrix equation of the form

({A] — K*RiRIR3B)) U] = [0]. (6)

In (6), [A] is a square matrix whose diagonal elements are

2(h% 4+ h%) and nondiagonal elements are 0’s, —h? and —h2 as

dictated by (8) and the boundary conditions. [B] is a diagonal

matrix whose diagonal elements are the derivative of |i;l;’—| at
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TABLE I
TM FREQUENCIES k ', THE LINE oF FIG. 1

j 2=0572=01 2 =025£ =025
$r1=0|=% |bg=—7|h=0|=% |=-—x
pr=7 == |a=7 |a=7 =~ | =7

1 |595 5.43 5.42 4.24 3.46 3.44

2 | 6.87 5.95 5.94 5.50 4.27 4.23

3 | 17.66 6.44 6.42 6.57 4.98 4.88

4 | 8.42 6.89 6.86 7.57 5.66 542

5 |9.27 7.32 7.26 7.62 6.33 5.86

6 |10.19 |7.76 7.65 8.66 6.62 6.23

7 11098 j}8.21 8.02 9.09 6.99 6.52

8 [11.16 | 8.69 8.41 9.69 7.57 6.63

9 (12,03 }9.19 8.82 10.33 | 7.65 7.07

10 12.14 | 9.72 9.25 10.58 | 8.31 7.46

x4 and y,. [U] is a column matrix and [0] is a null column
matrix. Order of all these matrices are (M — p)(N — ¢) where
p and g assume values of 0 or 2, depending on the boundary
conditions. Representing the eigenvalue of (6) as

¢ = K’ Rihih3 )
the matrix equation assumes the form
([A] = ¢BDIU] = [0] ®

The eigenvalues £ are found from the characteristic equation
det([A] - £[B]) = o. ©

The boundary conditions are 1) Dirichlet boundary condi-
tion

U=0 10)
for TM mode and 2) Neumann boundary condition

oU

— = 11

an 0 (1n

for TE mode.

Following the method suggested in the literature [2] for
forming the equations in accordance with Dirichlet and Neu-
mann boundary conditions, a set of simultaneous equations in
terms of unknown potentials at the nodes are obtained.

III. NUMERICAL RESULT AND DISCUSSION

Using (5) and the boundary conditions (10) and (11), the

matrices [A] [B] are evaluated for different values of R% and
R%. Substituting these matrices in (9), the eigenvalues and
hence cutoff frequencies for TE and TM modes are determined

for the case of a lunar guide for which ¢; = —7 and ¢ = 7
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TABLE II
TE FREQUENCIES k; THE LINE OF FIG 1
j £=05% =01 £ =025, 2 =025
Gr=0|d=% |b=-7|=0{h=% |[¢=—n
pr=m|g=—F | pa=7 |p=71|dp=~ |gy=7
2 |1.36 0.89 0.75 1.67 1.22 1.02
3 |2.67 1.66 1.36 2.93 2.00 1.66
4 |3.92 2.44 2.02 3.93 2.74 2.32
5 {5.10 3.21 2.67 4.08 3.42 2.91
6 |5.58 3.94 3.30 5.14 3.92 3.48
7 ]6.22 4.65 3.91 5.68 4.08 3.89
8 |6.69 5.33 4.51 6.14 4.71 4.04
9 {729 5.55 5.08 6.57 4.91 4.55
10 | 7.55 5.98 5.55 6.96 5.32 4.94

for the purpose of verification of the method. The deviation
of the results with those found by Kuttler using the method of
intermediate problems is below 1%. This agreement justifies
the validity of the analysis.

IEEE MICROWAVE AND GUIDED WAVE LETTERS. VOL. 5, NO. 6, JUNE 1995

Computation is also carried out for ¢1 = 0, ¢ = =
and ¢ = —35, ¢ = 5 with % = 05, z% = 0.1
and $2 = 025, £ = 025 Using 2) (¢1,¢2) and
(11, 12) for which the transformed structure is a rectangle
is found. The results converge for M = 7, N = 40. The
numerical data on cutoff frequencies TE and TM modes
are presented in Tables I and II. Results presented reveal
that with the changes in shape of structure from Ilunar
to semicircular shape the change in dominant TM cutoff
frequency is about 9% and that in dominant T'F is around
56%.
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